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Using a probabilistic approach, the parallel dynamics of fully connected Q-Ising
neural networks is studied for arbitrary Q. A novel recursive scheme is set up
to determine the time evolution of the order parameters through the evolution
of the distribution of the local field, taking into account all feedback correla-
tions. In contrast to extremely diluted and layered network architectures, the
local field is no longer normally distributed but contains a discrete part. As an
illustrative example, an explicit analysis is carried out for the first four time
steps. For the case of the Q = 2 and Q = 3 model the results are compared with
extensive numerical simulations and excellent agreement is found. Finally, equi-
librium fixed-point equations are derived and compared with the thermo-
dynamic approach based upon the replica-symmetric mean-field approximation.

KEY WORDS: Fully connected networks; Q-lsing neurons; parallel
dynamics; probabilistic approach.

1. INTRODUCTION

The parallel dynamics of extremely diluted asymmetric and layered feed-
forward Q>2-Ising neural networks have been solved exactly (cf. refs. 2-4
and the references cited therein). This has been possible because in these
types of networks one knows that there are no feedback loops as time
progresses. In particular, this allows one to derive recursion relations for
the relevant order parameters of these systems: the main overlap for the
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condensed pattern, the mean of the neuron activities and the variance of
the residual overlap responsible for the intrinsic noise in the dynamics of
the main overlap (sometimes called the width-parameter).

These results are in strong contrast with those for the parallel
dynamics of networks with symmetric connections. For these systems it
turns out that even in the diluted Q = 2 case, feedback correlations become
essential from the second time step onwards, which already complicates the
dynamics in a nontrivial way.(5-6) For fully connected Q = 2 systems, an
increasing complexity of such long-term temporal correlations makes the
dynamics, in general, extremely complicated. Therefore, either approximate
treatments of the feedback influence on the network evolution or only the
first two time steps of the main overlap evolution have been analyzed so far
in the literature. Nevertheless, this has led to some important insights into
the dynamics of the Little-Hopfield model (cf. refs. 7-15 and references
therein).

In this paper we present a complete solution of this temporal feedback
correlations problem in the zero-temperature parallel dynamics of fully
connected Q-Ising neural networks not only for Q = 2 but for general Q.

Using a probabilistic approach(13) we are able to generalize our
analysis for extremely diluted(2,16) and layered Q-Ising networks(4) to the
non-trivial case of fully connected systems at zero temperature. In par-
ticular, we succeed in developing a novel recursive scheme in order to
calculate the relevant order parameters of the system, i.e., the main overlap,
the activity and the variance of the residual overlap, for any time step and
taking into account all feedback correlations. The main difference with our
previous treatments is that we have to start from a study of the evolution
of the distribution of the local field instead of working directly with the
order parameters. In contrast with extremely diluted asymmetric and
layered network architectures, we find that the local field is no longer nor-
mally distributed but contains a discrete part.

As an illustration we write out these expressions in detail for the first
four time steps of the dynamics. Extensive numerical simulations for the
Q = 2 and Q = 3 model are compared with the theoretical results. They
confirm the exactness of this recursive scheme and do give a clear picture
of the time evolution in the retrieval regime of the network.

Finally, generalizing a Q = 2 result from the literature(17-18) we find
that there exists a Lyapunov function leading to the occurrence of fixed-
points and two-cycles. Since two-cycles in the Q = 2 Little-Hopfield model
seem to appear far from the retrieval region(19) and/or seem to involve only
a tiny fraction of all spins,(20) we have only looked at the fixed-point
dynamics. We show that the fixed-point equations for the order parameters
derived via thermodynamical methods(21) can be found from the dynamical
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scheme presented here by requiring the local field to become time-inde-
pendent implying that most of the discrete noise part is neglected.

The rest of the paper is organized as follows. In Section 2 we introduce
the model, its dynamics and the Hamming distance as a macroscopic
measure for the retrieval quality. In Section 3 we use the probabilistic
approach in order to derive the new recursive scheme for the evolution of
the distribution of the local field, leading to recursion relations for the
order parameters of the model. Using this general scheme, we explicitly
calculate in Section 4 the order parameters for the first four time steps of
the dynamics. In Section 5 we show the existence of a Lyapunov function
at zero temperature and we discuss the evolution of the system to fixed-
point attractors. A detailed discussion of the theoretical results obtained
in Section 4 and a comparison with extensive numerical simulations for
Q = 2, 3 are presented in Section 6. Some concluding remarks are given in
Section 7.

2. THE MODEL

Consider a neural network A consisting of N neurons which can take
values CT, from a discrete set fS = { — 1 = s1 < .s2 < • • • < sQ = + 1}. Given
the configuration a A ( t ) = { a j ( t ) } , jeA = { 1,..., N}, the local field in neuron
i equals

with Jij the synaptic couplings between neurons i and j In the sequel we
write the shorthand notation h A , i ( t ) = h i , ( a A \ { i } ) . The configuration
a A ( t = 0) is chosen as input. At zero temperature all neurons are updated
in parallel according to the rule

Here the energy potential ei[s | a A \ { i } ~ ] is defined by

where b>0 is the gain parameter of the system. The updating rule (2) is
equivalent to using a gain function gb( •),
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with s0 = —oo and sQ+1 = +00. For finite Q, this gain function gb(-) is a
step function. The gain parameter b controls the average slope of gb( •).

In this network we want to store p = aN patterns. These patterns are
a collection of independent and identically distributed random variables
(i.i.d.r.v.), { E u

i < f e } , uep = {1,..., p} and ieA with zero mean and
variance A = V a r [ £ u

i ] , The synaptic couplings between the neurons are
chosen according to the Hebb learning rule

To measure the retrieval quality of the system one can use the Hamming
distance between a stored pattern and the microscopic state of the network

This naturally introduces the main overlap

and the arithmetic mean of the neuron activities

We remark that for Q = 2 the variance of the patterns A = 1, and the
neuron activity aA(t) = 1.

3. GENERAL DYNAMICAL SCHEMA

It is known that contrary to the asymmetrically diluted and layered
neural networks, the parallel dynamics of fully connected systems, even at
zero temperature, is difficult to solve because of the strong feedback
correlations(22)

On the basis of the probabilistic approach used before (see, e.g., refs. 4
and 13) we develop in this section a recursive dynamical scheme in order
to calculate the distribution of the local field at a general time step, for
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Q > 2-Ising neural networks. This results in recursion relations determining
the full time evolution of the order parameters of these systems.

Suppose that the initial configuration of the network {ai,(0)}, ieA, is
a collection of i.i.d.r.v. with mean E[ai,(0)] =0, variance Var[a i(0)] =a0,
and correlated with only one stored pattern, say the first one {£l

i}:

This implies that by the law of large numbers (LLN) one gets for the main
overlap and the activity at t = 0

where the convergence is in probability(23) Using standard signal-to-noise
techniques (see, e.g., ref. 16), we find the local field at t = 0

where the convergence is in distribution (see, e.g., ref. 23). The quantity
N(0, d) represents a Gaussian random variable with mean 0 and variance d.

For a general time step we find from Eq. (4) and the LLN in the limit
N-> co for the main overlap (7) and the activity (8)

with h 1 ( t ) = l i m N _ a o h A , i ( t ) . In the above «•» denotes the average both
over the distribution of the embedded patterns {Eu

i} and the initial con-
figurations { a i ( 0 ) } . The average over the initial configurations is hidden in
an average over the local field through the updating rule (4). From the
study of layered networks(3-4) we know already that due to the correlations
there will be a third important parameter in the description of the time
evolution of the system: the influence of the non-condensed patterns which
is expressed by the variance of the residual overlaps
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Clearly, D(0) = a0/A.
It is the purpose of this section to calculate the distribution of the local

field as a function of time. This calculation can be done for arbitrary Q
without making the notation much heavier. The simplifications for Q = 2
will be mentioned at the end.

We start by rewriting the local field (1) at time t in the following way

From a technical point of view the explicit addition and subtraction of the
aci,.(0 term in (17) is convenient in order to treat all indices in the sum
over j on an equal footing. This turns out to be important to take into
account all possible feedback loops.

In order to determine the structure of the local field for fully connected
networks, we first concentrate on the residual overlap r u

A ( t ) , u e p > { 1 } . At
this point we would like to remark that the set of aN variables {£ u

i r
u

A ( t ) } u

appearing in the last term of (18) are not independent because the Eu
i are

weakly dependent on the rv
A(t), v=u. Indeed, after applying the dynamics

the ai(t) and the £u
i become dependent, leading to a weak dependence of

r u
A / { i ) ( t ) and £u

i- This microscopic dependence gives rise to a macroscopic
contribution after summing and taking the limit N-> oo.

On the contrary, in the case of layered or diluted networks all terms
of this set of variables are independent such that their sum is a normal dis-
tribution. Moreover, r u

A / { i } ( t ) and £u
i are also independent implying that

the mean and the variance of this distribution are known directly. This has
been used to put forward approximations for the fully connected Q = 2
model, precisely by neglecting (some of) these correlations between the £u

i

and the r u
A / { i } ( t ) . ( 6 , 9 ) Naturally, the results obtained could not be verified

by numerical simulations and further improvements are, up to now, not
satisfactory.(5,15) So a complete treatment of these correlations is necessary.
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In order to study the contribution from the dependence between the
£u

i and the r u
A / { i } ( t ) we rewrite the residual overlap (16) as

with

By subtracting the term £u
i ru

A(t)/N the modified local field h u
A , i , ( t )

becomes only weakly dependent on £u
i, whereas h A , i ( t ) depends strongly

on £u
i. We next want to expand gb( •) around hu

A , i( t ) . Therefore we have to
find out when the term £ u

i r
u

A ( t ) /^ /N in g b ( . ) becomes relevant. Since the
gain function g b ( . ) is a step function that changes its value by sk+1 —sk at
b(sk + s k + 1 ) , k = 1,..., Q— 1 we find that it is relevant if for some k

Denoting by Ik the set of indices satisfying condition (21), we split the
residual overlap into two sums:

In the argument of g b ( . ) in the first term of (22) the term £u
ir

u
A(t)/N

is left out since it can not change the value of gb( •) by definition of the
sets Ik. Combining the first two terms, Eq. (22) can be rewritten as
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This completes the rewriting of gb.
We then consider the limit N-> oo. In this limit the cardinal number

of the set Ik becomes deterministic

with f h u
i ( t ) the probability density of the modified local field h u

i( t ) at time t.
We remark that in the thermodynamic limit the density distribution of the
modified local field h u

i ( t ) at time t equals the density distribution of the
local field h i , ( t ) itself. Furthermore, we apply the CLT on the first term of
(23) and the LLN on the second term with the random variable r u

A ( t ) fixed.
This yields the following result

where, recalling Eqs. (14) and (20)

because of the weak dependence of h u
i ( t ) and £u

i, and

From the relation (25) one finds a recursion relation for the variance of the
residual overlap
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This finishes the treatment of the residual overlap. We first remark that
for (2 = 2 the following simplifications are possible: b(sk + 1 + s k ) = 0,
(sk +1 + sk) = 2, gb( •) = sign( •) and a ( t + 1 ) / A =1. Furthermore, for all Q
the last term on the r.h.s. of (28) is entirely coming from the correlations
caused by the fully connected structure of the network. It is absent for
layered (compare Eq. (30c) of ref. 4) and hence, of course, also for
extremely diluted asymmetric architectures. In the latter case also the
second term on the r.h.s. of (28) disappears.

Next, starting from the local field at time t + 1 in the form of Eq. ( 1 8 )
and using expressions (25), (26) and (27) we obtain in the limit N-> oo,
after some straightforward manipulations

From this it is clear that the local field at time t consists out of a discrete
part and a normally distributed part, viz.

where M i , ( t ) satisfies the recursion relation

and

with D(t + 1) given by the recursion relation (28).
We still have to determine f h i ( t ) in Eq. (27). We know that the quantity

M i ( t ) consists out of the signal term and a discrete noise term, viz.

The evolution equation tells us that a i , ( t ' ) can be replaced by gb,(hi(t-1))
such that the second term of M i ( t ) is the sum of stepfunctions of correlated
variables. These are also correlated through the dynamics with the nor-
mally distributed part of hi(t). Therefore the local field can be considered
as a transformation of a set of correlated normally distributed variables xs,
s = 0,..., t — 2, t, which we choose to normalize. Defining the correlation
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matrix p(s,s') = E[xsxs] we arrive at the following expression for the
probability density of the local field at time /

with x = (x0,..., xt,_2, xt,).
Together with the Eqs. (13)-(l4) for m'(t + 1) and a(t+1) the equa-

tions (25)-(28), (31) and (34) form a recursive scheme in order to obtain
the order parameters of the system. The practical difficulty which remains
is the explicit calculation of the correlations in the network at different time
steps as present in Eq. (28).

4. EVOLUTION EQUATIONS UP TO THE FOURTH TIME STEP

Following the general recursive scheme established in Section 3 evolu-
tion equations are derived for the order parameters of a fully connected
Q-Ising network for the first four time steps, taking into account all cor-
relations. This generalizes and extends the Q = 2 results in the literature
mentioned in the Introduction.

4.1. First Step Dynamics

Starting from Eqs. (12), (13) and (14) one has immediately

where « • • • » now stands for the average taken with respect to the dis-
tribution of the first pattern and the initial configuration and &z denotes
a Gaussian measure Dz = dzexp( — 1/2z2) /^/2P. We recall that D ( 0 ) = a0/A.
Next, from the initial conditions (9)-(12) and the definition of the modified
local field (20) one also knows that |£u

i, gb(hu
i(0))} i ,- and {£ u

i a i (0 )} i ,
become a set of uncorrelated parameters for u e p \ { 1 } . Here hu

i(t) =
l im N - - > 0 0 h u

A , l ( t ) - Therefore
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Using the recursion relation (28) this leads to

with

These results generalize the corresponding Q = 2 results (see, e.g., refs. 7
and 13).

4.2. Second Step Dynamics

First we need the distribution of the local field at time t = 1. This
follows immediately from Eqs. (31) and (32)

Recalling again Eqs. (13) and (14), the main overlap and the activity read

and

These equations correspond to the equations for the Q = 2-network
found in ref. 8. The calculation of the third order parameter, i.e., the
variance of the residual overlap, needs some more work. From the recur-
sion formula (25) one finds
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with the correlation parameters, R(t, t), defined as

This is based on the fact that by definition of the modified local field (20)
{£u

1, gb(hu
i(0))} i,. and {Eu

i,a i(0)}, become a set of uncorrelated variables.
These results lead to the recursion relation (recall Eq. (28))

We still have to determine the R(t, t). The correlation R(2, 0) can be written
down immediately again by using the definition of the modified local field
at t= 1

To obtain R(2, 1), one remarks that due to the dependence of a i(0) and
a i ( l ) the local fields h i ( 1 ) and hi(0) are correlated. The correlation coef-
ficient of their normally distributed part in general defined as

is found using the recursion formula (40)

Employing all this in Eq. (46) we arrive at

Here the joint distribution D w 1 , 0 ( x , y) equals
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We remark that, for Q = 2, the result (48) is slightly different from the
corresponding result in ref. 14. Indeed, in their approach these authors
make an ansatz stating the independence of the normally distributed and
discrete part in the noise arising from t > 2 onwards. This results in a dif-
ferent expression for the correlation R(2, 1). We find from Eq. (52)

with Erf(x) = (2/^/n) \ x
0 D y e x p ( - y 2 ) . The expression used by ref. 14 is

obtained when we put p ( 1 , 0 ) in the above equal to zero. So, although
these authors state explicitly that they have no convincing arguments in
favour of (as well as against) this ansatz for t > 2 , we see that their ansatz
really ignores some correlations. The effects on the dynamics will be
illustrated in Section 6. In our approach we do not need this ansatz.

4.3. Third Step Dynamics

We start by writing down the distribution of the local field at time
t = 2. From Eqs. (31) and (32) we find

This gives for the main overlap

with y the Gaussian random variable N(0, 1). The average has to be taken
over y, a , (0 ) and a i,(1). The average over ai(0) causes no difficulties
because this initial configuration is chosen randomly. The average over y,
the Gaussian random variable appearing in h i ( 2 ) , and a i ( l ) is more tricky
because h i ( 2 ) and a i , ( l ) are correlated by the dynamics. However, the
evolution equation (4) tells us that ai(1) can be replaced by gb(h i,(0)) and,
hence, the average taken over h i(0) instead of a i ( l ) .

From the recursion relation (29) one finds for the correlation coef-
ficient between h i(0) and h i(2)
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Using all this the main overlap at the third time step (56) becomes

where the joint distribution of x and y equals

In an analogous way one arrives at the expression for the activity at the
third time step

For Q = 2, the result (58) again differs from what can be found in the
literature, as can be seen when writing out explicitly this formula

Not only is the D(2) used here different as explained above but also the
correlations p(2, 0) are not taken into account in the literature.
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Finally, in order to find the variance of the residual overlap at the
third time step, D(3), we start by rewriting Eq. (28) as

with

Here we have used the recursion relation (25) for ru(2) and the fact that
£u

i, gb(hu
i(0))} i and £u

iai(0)}i become a collection of uncorrelated
variables for u e P\{ 1}. We then have to calculate the correlations R(3, 0),
R(3, 1) and R(3,2). From the definition (46), the local field (55) and the
joint distribution (59) one easily arrives at

Finding R(3, 2) is more tricky since, after rewriting the network configura-
tions { a i ( t ) } at time t= 1 and t = 2 by means of the gain function (4), the
local fields at the three first time steps appear. So one has to calculate the
elements of the correlation coefficients between these fields. The coefficients
p ( 1 , 0) and p(2, 0) have been obtained already before (recall Eqs. (51 ) and
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(57)). The correlation coefficient p(2, 1) of h(2) and h(1) is found by using
the recursion relation (29) as

The distribution function Dw2, 1 (x , y, z) of the three local fields equals

where

Finally, using all this information one gets for the correlation parameter

These results can be compared with those for extremely diluted systems. If
the dilution is symmetric (see refs. 5 and 6 for the case Q = 2) feedback
loops over two time steps can exist, but the probability to have loops over
a longer time period equals zero. Therefore the ai(0)-term in (55) drops
out. Furthermore in this symmetrically diluted Q = 2 case the expression
for the correlation coefficient (57) simply reads p(2, 0) = R(2, 0). If the dilu-
tion is asymmetric,(2) all feedback disappears and the local field is simply
Gaussian distributed.

4.4. Fourth Step Dynamics

Again, from Eqs. (31) and (32) we find
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This leads to the main overlap for the fourth time step

with z the Gaussian random variables ..N(0, 1). The average has to be
taken over z, ai(0), a i(1), and a i ,(2) or recalling the evolution equation (4)
over z, ai(0), h i ,(0) and h i(1). The distribution function of these variables,
i.e., Dw3,1(.x, y, z) is given by Eqs. (67)-(68) with the index 2 replaced
by 3. The correlation coefficients between the fields at different time steps
can again be calculated from the recursion relation (29). The following
coefficients not written down before are needed

Using all this Eq. (71) becomes

In an analogous way the activity at the fourth time step can be calculated.
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Since the numerical simulations explicitly show that the third time step
gives already an accurate picture of the dynamics in the retrieval region we
only write out the relevant formula here for Q = 2. The idea thereby is
to find out how the effect of the ansatz neglecting some correlations as
discussed at several instances above propagates in time. We find

This formula for Q = 2 has not been given explicitly in the literature even
not in the approximation proposed in ref. 14. The result of this approxima-
tion is to take the matrix w3,1 in the formula (76) above to be the unit
matrix and to use the approximate form for D(3) mentioned before. The
effect of this will be discussed further in Section 6.

5. FIXED-POINT EQUATIONS

A second type of results can be obtained by requiring through the
recursion relations (28), (31) and (32) that the local field becomes time-
independent. This means that most of the discrete noise part is neglected.
We show that this procedure leads to the same fixed-point equations as
those found from thermodynamics in ref. 21.

For the Q-Ising model at zero temperature one can show that

with a i ( t ) chosen such that

is a Lyapunov function. For finite N, H(t) is bounded from below implying
that H(t+ 1 ) — H(t) = 0 after finitely many time steps. This can be realized
for ai(t + 2) = a i ( t ) VieA. The proof is straightforward and completely
analogous to the argumentation used in refs. 17 and 18. Both a fixed point
and a two-cycle satisfy this condition. As stated in the introduction we only
study fixed-points.

Since the evolution equations for the order parameters in the
extremely diluted and layered Q -Ising models do not change their form as
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time progresses, the fixed-point equations are obtained immediately by
leaving out the time dependence (see refs. 2 and 4). This still allows small
fluctuations in the configurations {ai,}.

Since in the fully connected model treated here the form of the evolu-
tion equations for the order parameters do change by the explicit
appearance of the {a,-(t)}, t>0, we can not use that procedure to obtain
the fixed-point equations. Instead we require that the distribution of the
local field given by (29) becomes independent of time. This is a stronger
condition because fluctuations in the network configuration are no longer
allowed. In fact, it means that out of the discrete part of this distribution,
i.e., M i ( t ) (recall (33)), only the a i , ( t— 1) term is kept besides, of course,
the signal term. This procedure implies that the main overlap and activity
in the fixed-point are found from the definitions (7), (8) and not from
leaving out the time dependence in the recursion relation (13) and (14).
The same line of reasoning is followed in, e.g., refs. 24 and 25.

We start by eliminating the time-dependence in the evolution equa-
tions for the local field (29). This leads to

with hi =limt-->00, h i ( t ) . This expression consists out of two parts: A normally
distributed part hi =.N(E1

im
1, oa/( 1 ~x)2) and some discrete noise part. We

remark that this discrete noise coming from the correlation of the { a i ( t ) }
at different time steps (here only the preceeding time step is considered) is
inherent in the fully connected dynamics.

Employing the expression Eq. (79) in the updating rule (4) one finds

This is a self-consistent equation in ai, which in general admits more than
one solution. This type of equation has been solved in the case of analog
neural networks with continous time dynamics using a Maxwell construc-
tion. Such a construction is standard in thermodynamics in order to maxi-
mize the exponent of the integrand appearing in free energy calculations.
Here we use a similar geometrical construction to treat Eq. (80).

Let L be the straight line which connects the centers of the plateaus of
the gain function gb( •). The equations for the functions gb( •) and L( •) read
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The condition on the r.h.s. of (81) is a condition on x. Using the definition
of L( •), one can transform this into a condition on the image of L( •),
J L = { y e R . | E x e R : L(x) = y} , viz.

Consider the transformation ,T: (x, y)—>(x — any, y)

The function .T(gb}( •) is not bijective while ,JJ is not one-to-one. To
obtain a unique solution for Eq. (80) we modify the former function such
that it becomes a step function with the same step height as the one in
•^~(gb)( .) and the width of the steps such that .T(L) connects the centers
of the plateaus:

or, using (4)

This at first sight ad-hoc modification leads us to a unique solution of the
self-consistent equation (80). Indeed, from this modified transformation we
know that

such that

At this point we remark that plugging this result into the local field
equation (79) tells us that the latter is the sum of two Gaussians with shifted
mean (see also ref. 12).

Using the definition of the main overlap and activity (7) and (8) in the
limit N-> oo, one finds in the fixed point
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From (25), (28) and (27) it is clear that

with

These resulting equations (89)-(91) are the same as the fixed-point equations
derived from a replica-symmetric mean-field theory treatment in ref. 21.
Their solution leads to the a — b phase diagram Fig. 1b in ref. 21. We end
with the observation that for analog networks the construction (81 )-(86) is
not necessary: the fixed-point equation (80) has only one solution.

6. NUMERICAL SIMULATIONS

As an illustrative example the equations derived in Section 4 have
been worked out explicitly for a uniform distribution of patterns in the case
of the 2 = 2 model (A = 1) and the Q = 3 model with equidistant states
(A=2/3).

For the Q = 2 model the temperature-capacity phase diagram follow-
ing from a thermodynamic replica-symmetric mean-field theory approach is
well known.(26) Also, there have been a lot of numerical simulations of the
dynamics using approximate theories mentioned in the introduction.(15)

Therefore we mainly restrict ourselves to a comparison of the complete
recursive scheme developed here and the results obtained in ref. 14
(extended to the fourth time step) based upon the ansatz discussed in
Sections 4.2-4.4.

At zero temperature the critical capacity is 0.14. We present in Fig. 1
the overlap m 1 ( t ) , t = 1 to 4 versus the initial overlap m1

0 with the condensed
pattern for a typical case a = 0.1. (We forget about the superscript 1). For
m0 > 0.4 we see that the m = 1 retrieval attractor is reached quickly. In fact
three time steps give us already an accurate picture of the dynamics in the
retrieval region. The results obtained by the evolution equations derived
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Fig. 1. A comparison of the theoretical results and numerical simulations for Q = 2 systems
with N = 6000. The overlap m(t) is presented for the first four time steps as a function of m0

for a = 0.1. Theoretical (simulations) results for the first, second, third and fourth time step are
indicated by a short-dashed curve (diamond symbol), a long-dashed curve (times symbol),
a full line (triangle symbol) and a dashed-dotted curve (plus symbol) respectively. The results
using ref. 14 are indicated with a thin full and a thin dashed dotted line.

here agree very well with simulations done for system-sizes up to N = 6000
(each data point is averaged over 1000 runs). The results obtained using
ref. 14 systematically overestimate the overlap for m0>0.24 and this effect
becomes stronger when going from time step 3 to 4. For smaller m0 the
overestimate is even in the wrong direction of the dynamical evolution.

For the Q = 3 model a thermodynamic replica-symmetric mean-field
theory approach leads to a capacity-gain phase diagram discussed already
in ref. 21 (Fig. 1b). As explained in Section 5 the same phase diagram can
be obtained through the dynamical approach presented here. For con-
venience and completeness this phase diagram is reproduced here as Fig. 2.
At this point it is also useful to recall that there are two types of retrieval



Fully Connected Q-lsing Neural Networks 147

Fig. 2. The a-b phase diagram. (21 )The ( thin) full curve indicates the maximal storage
capacity, the thick full curve the thermodynamic transition of the retrieval state, the broken
curve the spin-glass transition. In region I, r = O ( 1 ) while in region II r = O ( 1 0 ) . The points
1 to 4 indicate the network parameters used in the numerical simulations.

states. In region I the mean-square random overlap with the non-condensed
patterns, r, is of order O ( 1 ) while in region II r is of order 0(10). (21)

For specific network parameters corresponding to different points in
the retrieval region of this equilibrium phase diagram, indicated as 1 to 4,
we have compared the dynamics governed by the evolution equations
found here with extensive simulations involving system-sizes up to
N = 6000 (each data point is averaged over 1600 runs).

Figures 3-6 present an overview of these results by plotting the over-
lap m(t), the activity a(t) and the Hamming distance d(t) versus the initial
overlap m0 with the condensed pattern. The initial activity is taken to be
a0 = 0.85.

First we consider region I. For network parameters corresponding to
point 1 below the thermodynamic transition line, i.e., a = 0.005, b = 0.3, we
see in Fig. 3 that for m0 > 0.33 the dynamics quickly evolves to an overlap
m = 1 and that the Hamming distance is zero for m0 > 0.37. The activity
attains the value 2/3, meaning that the network configuration is uniformly
distributed. The boundary between the m = 1 attractor and the zero-attractor
is rather sharply determined.

For a network corresponding to point 2 above the thermodynamic
transition line, with a = 0.03, b = 0.5, we need a larger value of m0 to reach
the m = 1 attractor and a Hamming distance zero. As seen in Fig. 4, m0 has
to be at least 0.75. Also the boundary between the m = 1 attractor and the
zero-attractor is less sharply determined. Figure 5 shows that this behavior
is qualitatively the same for a = 0.009, b = 0.7, corresponding to point 3
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Fig. 3. A comparison of the theoretical results and numerical simulations for systems with
N= 6000. The overlap m(t), the activity a(t) and the Hamming distance d(l] are presented for
the first three time steps as a function of m0 for the network parameters b = 0.3, a = 0.005,
a0 = 0.85. Theoretical (simulations) results for the first, second and third time step are
indicated by a short-dashed curve (diamond symbol), a long-dashed curve (times symbol) and
a full line (triangle symbol) respectively.
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Fig. 4. As in Fig. 3, for the network parameters ft = 0.5, a = 0.03, a0 = 0.85.

situated above the spin-glass transition in the phase diagram. In this case
the value of m0 has to be at least 0.85. For the other network parameters
we have looked at, e.g., a = 0.0115, b = 0.5; the global behavior is similar.

For network parameters corresponding to points in region II of the
phase diagram, e.g., point 4 with a = 0.015, b = 0.1 it is shown in Fig. 6 that
the main overlap goes to its maximum value for almost all values of m0.
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Fig. 5. As in Fig. 3, for the network parameters b = 0.7, a = 0.009, a,, = 0.85.

The basin of attraction of the zero fixed-point is zero. The activity,
however, goes to a value larger than 2/3. The network configuration is no
longer uniformly distributed: the state ai, = 0 has a smaller probability to
appear than the states ai-= +1. Hence, the Hamming distance is never
zero. This must be due to the fact that the influence of the non-condensed
patterns is much larger here (r=, 0(10)). The same qualitative behavior is
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Fig. 6. As in Fig. 3, for the network parameters b = 0.1, a = 0.015, a0 = 0.85.

found for network parameters corresponding to points in region II below
the thermodynamic transition line, e.g., a = 0.005, b = 0.1.

7. CONCLUDING REMARKS

In this paper we have derived the evolution equation for the distribu-
tion of the local field governing the parallel dynamics at zero temperature
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of fully connected Q > 2-Ising networks. Hereby we have taken into account,
for the first time, all feedback correlations without any approximation. In
contrast with extremely diluted asymmetric and layered networks we show
that this distribution is no longer normally distributed but contains a
discrete part. Specializing to the Q = 2 case treated in the literature before
by making an ansatz stating the independence of the normally distributed
and discrete part of the noise arising from t > 2 onwards, we find that this
ansatz ignores some correlations.

Using this evolution equation we have developed a general recursive
scheme which allows us to calculate the relevant order parameters of the
system, i.e., the main overlap, the activity and the variance of the residual
overlap, for any time step. We have worked out this scheme explicitly for
the first four time steps of the dynamics.

Under the condition that the local field becomes time-independent,
meaning also that most of the discrete noise part is neglected, we have
obtained the fixed-point equations for these order parameters. They are
found to be the same as those derived via thermodynamic methods.(21)

As an illustration we have presented a detailed discussion of these
results for the Q = 2 and Q = 3 model and we have made a comparison
with extensive numerical simulations. It is seen that these numerical results
provide excellent support for our theoretical predictions and that the first
three time steps do give already an accurate picture of the time evolution
in the retrieval regime of the network. For Q = 2 we also find that the
ansatz mentioned above overestimates the retrieval overlap.
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